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In this paper, the propagation of interfacial waves in a two-layered fluid system is 
investigated. The interfacial waves are weakly nonlinear and dispersive and propagate 
in a slowly rotating channel with varying topography and sidewalls, and a weak steady 
background current field. An evolution equation for the interfacial displacement is 
derived for waves propagating predominantly in the longitudinal direction of the 
channel. This new evolution equation is called the unified Kadomtsev-Petviashvili 
(uKP) equation because most of the KP-type equations existing in the literature for 
both surface water waves and interfacial waves are special cases of the new evolution 
equation. The Painlev6 PDE test is used to find the conditions under which the uKP 
equation can be solved by the inverse scattering transform. When these conditions 
are satisfied, elementary transformations are found to reduce the uKP equation to 
one of the completely integrable equations: the KP, the Kortewegde Vries (KdV) 
or the cylindrical KdV equations. The integral invariants associated with the uKP 
equation for waves propagating in a varying channel are obtained and their relations 
with the conservation of mass and energy are discussed. 

1. Introduction 
The Kadomtsev-Petviashvili (KP) equation was first derived to describe weakly 

nonlinear and weakly dispersive surface water waves propagating over a constant 
depth in a predominant direction with a small transversal modulation (Kadomtsev 
& Petviashvili 1970; Johnson 1980). The constant-depth assumption puts a great 
limitation on the practical application of the KP equation. Several extended or 
generalized KP equations have been derived to include additional physical and 
geometrical factors, such as the Coriolis force, a weak steady background current 
field with non-vanishing vorticity, and the variation of topography and sidewalls. 
Moreover, many attempts have also been made to extend the KP equation to internal 
waves in stratified fluids and interfacial waves in a two-layered system. 

Using the Lagrangian equations, Grimshaw (1985) derived a rotation-modified KP 
(rmKP) equation for long internal waves propagating in a rotating channel with a 
constant depth and width. Katsis & Akylas (1987) gave an informal derivation of the 
rotation-modified KP equation for interfacial waves of a two-layered system. They 
studied the effect of rotation on the propagation of an initially straight-crested Kelvin 
solitary wave in a rotating channel which has a constant depth and width. In the case 
of free surface waves, Grimshaw & Melville (1989) rederived the rotation-modified 
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KP equation from the Euler equations. They showed that, in general, solutions of the 
rmKP equation are not locally confined because of the radiation of three-dimensional 
PoincarC waves behind. Later, Grimshaw & Tang (1990) studied the rmKP equation 
both analytically and numerically to determine the structure of the solutions which 
are initially localized. 

Djordjevic & Redekopp (1978) gave the variable-coefficient KP (vcKP) equation 
for interfacial waves propagating over a bottom allowed to vary slowly in the primary 
wave propagation direction. Starting from the Euler equations, David, Levi & 
Winternitz (1987) derived a generalized KP (gKP) equation which describes surface 
water wave propagation in a wide strait or channel with a slowly varying topography 
and width, and a weak steady current field with non-vanishing vorticity. Under 
certain restrictions on the vorticity and the geometry of the strait, the gKP equation 
can be reduced to one of several completely integrable partial differential equations, 
such as the KP, Korteweggde Vries (KdV) and cylindrical KdV (cKdV) equations 
(David, Levi & Winternitz 1989). Iizuka & Wadati (1992) used the potential theory 
to derive a variable-coefficient KP equation for surface water waves propagating 
over an uneven bottom in an unbounded domain. Imposing some limitations on 
the topography, they reduced the vcKP equation into the KP equation and found 
analytical solutions to describe the deformation of a line soliton due to the depth 
variation. 

In summary, for surface water waves, the existing KP-type equations take either 
the effect of topographical variation (David et al. 1987; Iizuka & Wadati 1992) or 
the rotation effect into consideration (Grimshaw & Melville 1989), but none of them 
considers both effects simultaneously. For interfacial waves in a two-layered system 
with the presence of rotation, the KP-type equation has not been rigorously derived 
yet. The primary objective of this paper is to derive a unified KP  equation (uKP) for 
surface and interfacial waves propagating in a rotating channel or strait with varying 
topography and sidewalls. We shall demonstrate that the uKP equation includes most 
of the existing KP-type equations in the literature as special cases and shall also 
investigate the properties of the uKP equation. 

In the next section (§2), we start with the Euler equations for interfacial waves in 
a two-layered rotating channel. Assuming that the nonlinearity, dispersion, rotation, 
transversal modulation, and the variation of the topography and the sidewalls of 
the channel are small and equally important, we derive an evolution equation for 
the interfacial displacement (details are given in the Appendix), called the unified 
KP (uKP) equation (see (2.14)). The effect of a weak steady current field on 
wave propagation is also taken into account in the process of deriving the uKP 
equation. When the density of the upper layer is zero, the uKP equation reduces 
to the evolution equation for free surface waves propagating in the same physical 
and geometrical setting. Most of the existing KP-type equations for surface and 
interfacial waves are shown to be special cases of the uKP equation. In 93, the 
PainlevC PDE test is used to find the complete integrability conditions for the uKP 
equation, which allow the corresponding Cauchy problem to be solved exactly by the 
inverse scattering transform. Moreover, when the integrability conditions are satisfied, 
the uKP equation can be transformed into one of well-known equations: the KP, 
the KdV or the cKdV equations, via elementary transformations. As a result, for 
certain topographies and sidewalls, it is possible to obtain analytical solutions for 
solitary-wave propagation in the absence of rotation (which is one of the conditions 
for the uKP to be completely integrable according to the PainlevC test). In 94, the 
integral invariants associated with the uKP equation for waves propagating in a 
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varying channel are sought and their relations with the conservation of mass and 
energy are also discussed. 

2. The unified KP equation 
2. LGoverning equations and assumptions 

We consider internal waves propagating along the interface of two fluid layers 
confined to a channel rotating on the f-plane with a constant Coriolis parameter f .  
The densities of the upper and lower layers are p"+ and p -  (p"- > p + ) ,  respectively. 
Cartesian coordinates are employed with the Z-axis pointing vertically upwards, the 
Z-axis pointing in the longitudinal direction of the channel and the Y-axis in the 
transversal direction. The still interfacial surface is defined by Z = 0 and the upper 
and lower layers are originally bounded by Z = fi+ and P = - f i - ( Z , j j )  respectively, 
where the bottom is allowed to vary in the Z- and jj-directions. 

The fluids in the channel are assumed to be inviscid and incompressible. The 
governing equations for flows in the upper and lower layers are 

( 2 . 1 ~ )  

(2.lb) 

( 2 . k )  

(2.ld) 

where signs are vertically ordered and superscripts + and - are used to identify 
quantities in the upper and lower layers, respectively; ii*,C* and %& represent the 
velocity components and g* is the hydrodynamic pressure. The total pressure p* is 
written as 

P' = - p g z  +p*, (2.le) 

The kinematic and dynamic boundary conditions along the interface, P = q(T ,  Z, j j ) ,  
where g is the gravitational acceleration. 

are 

p + = p -  on ~ = q .  ( 2 . M  
The rigid-lid assumption is adopted to approximate the free surface 

% + = o  on ~ = f i + .  (2.lh) 

The no-flux boundary conditions on the bottom, Z = - I?(Z, j j ) ,  and the vertical 
sidewalls of the channel, j j  = jj,(Z) and j j  = j j l (Z ) ,  are 

(2.l i)  
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respectively. 
We introduce the following dimensionless variables : 

- 10 
t = -t, 

CO 
Yl = lOYl, 

where lo and ho are the characteristic wavelength and depth, respectively; po is the 
characteristic density; a0 and co are the characteristic amplitude and phase velocity 
of linear long interfacial waves, respectively. 

The corresponding dimensionless version of equations and boundary conditions 
(2.1) becomes 

auk au+ aw+ 
ax ay aZ 

ap+ ) a x  
+au+ +au+ +au+ 

at aY az 

-+-+- = 0, 

du' + E ( u-- ax + u-- + w-- - yv' = -- 

(2 .3~)  

(2.3b) 

(2.3~) 

(2.3e) 

p + p +  - p-p-  + q = o on z = q, (2.3J) 

w + = O  on z = H + ,  (2.3g) 
- aH- - aH- 

ax dY 
- u  ~ on z = -H-(x,y), w - = - u  - (2.3h) 

Y = Yr(x), ~ ( x ) ,  (2.3i) u+ = u+- dY on 
dx 

where parameters E, p2 and y are defined as 

E = ao/ho, P2 = (ho/lo)2, Y = lof/co. (2.4) 

Thus, E measures the nonlinearity, whereas p2 represents the relative shallowness of 
the fluid layers. The parameter y is the reciprocal of the Rossby number and measures 
the ratio of the Coriolis acceleration to the inertial acceleration. 

We shall derive an evolution equation for weakly nonlinear and weakly dispersive 
waves in a slowly rotating channel. Explicitly, we assume that 

(2.5) 
2 p = tl~, y = with E << 1, 
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where a = 0(1), f l  = 0(1) are two arbitrary constants. Furthermore, the weakly 
three-dimensional effect is also considered (i.e. waves propagate predominantly in 
one direction, say the +.+direction). According to the linear dispersion relation, if 
the weakly three-dimensional effect is as important as the weakly dispersive effect, 
the variation of the wave field in the y-direction should be O(p)  or O(C' /~)  by (2.5) 
(Akylas 1994). In other words, the wave field in the y-direction is a function of a 
slow variable Y defined as 

Therefore, the channel can be viewed as a very wide channel in the sense that its 
typical width 

If the effects of the variation of the topography and the sidewalls of the channel 
are as important as the effects of nonlinearity, dispersion, rotation and transversal 
modulation, the assumptions (2.5) and (2.6) impose certain limitations on the shapes 
of the topography and the sidewalls of the channel. The most general topography 
and sidewalls fitting in this framework are 

= O(h0/e) is much greater than the typical depth h~ for e << 1. 

H -  = h-(ex) + eB(ex, Y ) ,  (2.7) 

y, = e-'/2Y&x), yl = d / 2 Y L ( € X ) .  (2.8a, b) 
In other words, the topographical variation in the y-direction is both gentle ( H -  is 
a function of slow variable Y )  and weak (&H- = O(E)), while the variation in the 
x-direction is only required to be gentle. The channel should be wide and the change 
of the sidewalls in the x-direction should be gentle. We remark here that in David 
et al.'s (1987) paper for surface water waves, the topography in the y-direction is 
restricted to a linear function of Y (up to O(E)) :  h = ho(rx) +ehl(ex)Y +O(e2) ,  which 
is a special case of (2.7). 

2.2. Perturbation analysis 
We introduce the following transformation: 

5 = 1" C-'(ex)dx - t, X = E X ,  Y = e1l2y, 2 = Z,  (2.9a) 

where 
C(X) = ( p + / h +  + p - / h - ) - 1 / 2  (2.9b) 

and h+ = H+ = constant is used. Note that h- is the leading-order term in the 
expression for the topography H -  (see (2.7)). Therefore, C is the leading order of 
the local linear-long-wave speed and 5 = O( 1)  is the characteristic coordinate moving 
at the speed of C. Transformation (2.9a) is simpler than the equivalent one used by 
David et al. (1987) for surface water waves (see (2.17) and (2.21) in their paper), 
because by definition (2.9b), C(X) is independent of E and Y in our new coordinates. 
Thus, there is no need to expand C in terms of e in the following perturbation 
analysis and the relations among the derivatives in the new and old coordinates are 
much simpler. 

The relations between the derivatives with respect to the old independent variables 
(t, x, y, z) and the new independent variables (5, X, Y ,  2 )  are given by 

0 
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In terms of the new coordinates, equations and boundary conditions (2.3) can be 
rewritten as 

(2.1 la) 
1 auk auk avf  aw* 
c at ax ay az + E- + P-- + - = 0, 

auk + a u k  + 6-  + p v * -  + w-- + p p v *  
ax ay az 

-- 

(2.11 b) 

1 
1 ap* ap* 
c a t  ax + E - ,  

- - -- 

ap* 
ay ' 

(2.11d) 

(2.11e) 

1 - - E [.. (cay + €=) + € v - + w-- - P p u +  = El l2 -  (2.11c) 
av* 1 av* av* 112 f av+ +av* 
a t  a Y  az 

aw+ 
az az 

p+p+ - p - p -  + q = o on z = q, (2.11J) 

w + = O  on Z = h+, (2.1 I d  

- w = - E l l -  (2.11 h) 
aB (yi - +€- :!) - € 3 / 2  v - ay on Z =-h--eB, 

where (2.7) and (2.8) have been used. 

the following series forms : 
A solution to the governing equations and boundary conditions (2.11) is sought in 

(2.12~) 

(2.12b) 

(2.12c) 
where G = (u*, w*, p'}. We remark here that the leading order of the x-component 
of the velocity, u$, is 0(1), whereas the leading order of the y-component, E ' / ~ u $ ,  

is O ( E ' / ~ ) .  Substituting (2.12) into (2.1 1) and expanding the interfacial conditions 
(2.11e) and (2.11J) at Z = 0 and the bottom boundary condition (2.11h) at Z = -h-, 
we obtain a sequence of initial-boundary-value problems by collecting coefficients of 
E". In the zeroth-order problem ( n  = 0), a steady background current field, which 
appears as constants of integration with respect to t, is taken into consideration. All 
the zeroth-order variables are expressed in terms of q o  which can be determined from 
the solvability condition of the first-order problem ( n  = 1). The details are given in 
the Appendix. If we write 

vlo = 4(X, Y )  + fi(t,X, Y), (2.13) 

where 4 is the mean interfacial displacement and can be predetermined through the 
rotation and the background current field (see (A 16) and note that when the rotation 
is absent or the upper- and lower-layer averaged mass fluxes of the background 

G(t,X, Y,Z;e) = Go(t,X, Y,Z) + fGl(t,X, Y,Z) + O ( E 2 ) ,  

V'(t,X, Y , z  ; E )  = [v$(t,X, Y , Z )  + .vF(t,X, Y ,Z )  + 0 ( 4 ]  , 

r(t ,X, y ; E )  = ro(t,X, Y )  + W(t ,X ,  Y )  + O(C2), 
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current in the x-direction are equal, Fj=O), the solvability condition from the first- 
order problem requires that the unsteady part of the leading-order displacement, 9, 
should satisfy the following evolution equation (see (A 17)) : 

3c2 a2q2 c t ~ ~  a4q c2 a2q p2 
4 a52 6 a 5 4  2 ay2 T Q  +-0-2-+--+--- 

(2.14) + [g + CN2 + ,0-2Fj] 3c2  = 0. 

The coefficients 01 and 0 - 2  and N2 in (2.14) are defined as 

D,(X) = p-(h-)" + (-l)("-')p+(h+)", (n = 1, -2) (2.15~) 

and 

(2.15b) 

where F:(X, Y, 2 )  represent the x-component velocities of the background steady 
current in the upper- and lower-layer, respectively. The boundary conditions for 9 
can be written as (see (A 18)) 

(2.16) 

In equation (2.14), X ,  which is proportional to the spatial variable x, can be viewed 
as a time-like coordinate, whereas < as a space-like coordinate. The 'initial' condition 
for (2.14) at X = XO corresponds to the interfacial displacement data measured over 
a period of the physical time t along the cross-section x = xo. The physical meaning 
of each term in (2.14) is explained as follows: the first term represents refraction and 
shoaling; if other terms in (2.14) are neglected, then (2.14) yields 0 cc C-lI2, which is 
equivalent to the Green law; the second and the third terms describe the nonlinear and 
frequency dispersion effects, respectively; the fourth term represents the modulation 
in the transversal direction; the fifth term accounts for the rotation effect; and the last 
term comes from the difference between the leading-order linear-long-wave speed C 
and the actual linear-long-wave speed, which is contributed by the deviation of actual 
topography from h-, the background steady current field and the mean interfacial 
displacement. The effect of the sidewalls appears only in boundary conditions (see 
(2.16)). In (2.14), the nonlinear term is proportional to 0 - 2  = p-/(h-)2 - p+/(h+)2. 
To ensure that the nonlinearity is as important as the dispersion and other effects, we 
make another assumption that 0 - 2  = O( 1). 

2.3.Reduction to various KP-type equations 
When the channel is uniform (i.e. the bottom is flat and the sidewalls are straight 
and parallel), the background current field is absent, and ct = 1 (i.e. p2 = c) ,  equation 
(2.14) and boundary conditions (2.16) become (ij = 0 and 4 = q o )  

avo P 
a Y  c - + - q o = O  on Y = Y,, Y,. (2.17b) 
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For uniform channels, it is more convenient to use a slow temporal variable T = E t  

instead of the slow spatial variable X = E X  in transformation (2 .9~)  

5 = x/C - t, T = E t ,  Y = E ~ ” Y ,  2 = Z. (2.18~) 

The relation between T and X is given by 

T = X / C  - € 5 .  (2.18b) 

With the following changes: 

a a  a a i a  
ax + caT, a t  a t  a T  

- + - - e - - ,  

equation (2.17~) becomes (after O ( E )  terms have been dropped) 

(2.19) 

which is the evolution equation, in terms of (T, 5 ,  Y , Z ) ,  for interfacial waves propa- 
gating in a uniform channel. The boundary conditions for qo in terms of (T, 5 ,  Y, 2 )  
remain the same as (2.17b). 

For the rigid-lid assumption on the free surface to be valid, the difference between 
the densities in the upper and lower layers must be very small. Thus, p* = 1 and 
D, = (h-)” + (-l)”-’(h+)”. To compare equation (2.20) with the rmKP equation given 
by Katsis & Akylas (1987), we rescale the variables T and 5 such that 

a a a a 
- + c- 

aT a T  a5 a5 
- + c-, (2.21) 

and use the depth of the lower layer as the typical depth (i.e. h- = 1 and h+ = h+/h-). 
In so doing, equation (2.20) becomes 

1 a2qo P2 (2.22) + 4 (1 - K-/K+) -@- + 7- + -: - - 
a2qo 3 a2q; i;+ a4q0 

aTag 6h- a 5 4  2 a y  2c2qo=O- 

The rmKP equation given by the Katsis & Akylas (1987) is for the left-going waves. 
For the right-going waves, the corresponding rmKP equation can be obtained by 
changing the signs of all terms except the first term in their rmKP equation ((12) in 
their paper), which is exactly the same as (2.22) (note that p in their paper is equal 
to !p/C in this paper). The boundary conditions given by Katsis & Akylas ((13) in 
their paper) also agree with (2.17b). 

For surface water waves, p+ = 0,p- = 1 and h- = 1, equation (2.20) and boundary 
conditions (2.17b) become 

3a2q; 1 a4q0 1 a2qo p2 a2q0 
aTa5 4 a p  6 a 5 4  2ay 2 

+ -- + -- + -2 - -qo = 0, 

on 

(2.23~) 

(2.23b) 

which agree with the rmKP equation and boundary conditions derived by Grimshaw 
& Melville (1989). When p = 0, (2.23~) also recovers the KP equation given by 
Mathew & Akylas (1990) (note that their KP equation (15) is for left-going waves; 
for right-going waves, all the minus signs in the equation should change into plus 
signs), whereas the boundary conditions (2.23b) for vertical sidewalls reduce to the 
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special case of the sloping sidewall boundary conditions given by Mathew & Akylas 
(1990) (see (16a) with d = 0 in their paper). 

On the other hand, in the absence of rotation, i.e. p=O, equation (2.14) and 
boundary conditions (2.16) can be simplified to (fj = 0 and 4 = q o )  

(2.244 

(2.24b) 

Several further simplifications can be made. We discuss two different situations : 

H- = h-(X), i.e. 9: = 0 and B = 0, equation (2.24~) is reduced to 
(a) If the background current is absent and the topography can be expressed as 

which agrees with the vcKP equation for interfacial waves given by Djordjevic & 
Redekopp (1978) (see (4.16) in their paper). 

(b) For surface water waves, p+ = 0,p- = 1 and C2 = h-(X) = ho(X), equation 
(2.24~) and boundary conditions (2.24b) become 

(2.26b) 

If the background current is ignored, F u = O ,  equation (2.26~) agrees with the vcKP 
equation given by Iizuka & Wadati (1992). On the other hand, when Fu # 0 
but B = 0 (i.e. the topography does not vary in the transversal direction), the 
transformation used by David et al. (1987) ((2.17) with C = 1 in their paper) is 
the same as our transformation (2.9~). The equation and boundary conditions they 
derived for this situation agree with (2.26~) and (2.26b). (Note that Ai = Bi = 0 
and 40 = hhI2Fu in (2.31) and (2.33) in their paper.) The variable-coefficient KdV 
equation derived by Kakutani (1971) and Johnson (1973) can also be recovered by 
setting Fu = B = 0, aY = 0 in equation (2.26~). 

In view of the discussions given above, we conclude that the evolution equation 
(2.14) is a general equation and most of the KP-type equations appearing in the litera- 
ture are special cases of (2.14). Therefore, we call (2.14) the unified KP (uKP) equation 
for surface and interfacial waves in a rotating channel with varying topography and 
sidewalls, and a steady background current field. 

3. Complete integrability of the uKP equation 
The unified KP  equation (2.14), together with the initial condition Q(<,X = 0, Y )  = 

qo(<, Y ), boundary conditions along the vertical sidewalls (2.16), and appropriate 
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boundary conditions at 5 = fa, describes the evolution of the interfacial eleva- 
tion 0 in a rotating channel with varying topography and sidewalls, and a steady 
background current field. In this section, our investigation focuses on initial-value 
problems. 

Because of the variable coefficients and the appearance of the rotation term 
in the uKP equation (2.14), in general, no analytical procedure is available for 
obtaining solutions of the corresponding Cauchy problem. On the other hand, the KP 
equation, the KdV equation and the cylindrical KdV equation (cKdV) are completely 
integrable, i.e. with a suitable initial condition they can be solved by the inverse 
scattering transform. These equations possess a number of remarkable properties : 
the existence of soliton solutions, an infinite number of symmetries and conservation 
laws, similarity reductions to the Painleve equations, Backlund transformations and 
the Lax representation (Ablowitz & Clarkson 1991). 

A powerful tool to investigate the complete integrability of a nonlinear evolution 
equation is the Painleve PDE test, which also yields other information such as Lax 
pairs and Backlund transformations (Weiss, Tabor & Carnevale 1983 ; Clarkson 
1990; Brugarino & Greco 1991). The Painlevk PDE test provides a useful criterion 
for whether a given partial differential equation is completely integrable. It gives 
the necessary conditions on the coefficients of a nonlinear evolution equation so 
that all solutions to the evolution equation are 'single-valued' in the neighbourhood 
of the non-characteristic movable singularity manifold (Ablowitz & Clarkson 1991). 
Moreover, when these conditions are satisfied, the evolution equation can be reduced 
to the canonical forms (e.g. KP, KdV or cKdV) via elementary transformations. In 
the following subsections, we first carry out the Painlevk analysis to search for the 
conditions under which the uKP equation, (2.14), is completely integrable. When 
these conditions are satisfied, we seek transformations to reduce the uKP equation to 
one of the known integrable equations. 

3.1. Painlev6 analysis 
To simplify the algebraic manipulation encountered in the Painlev6 PDE test, we 
introduce the following transformation : 

X 

z = (6/a)'l2 1 D1/CdX, 8 = ( ~ / c x ) ' / ~ < ,  I = ( ~ / c x ) ' / ~ Y .  

Under this transformation, equation (2.14) becomes 

where 
C2 a = -  
201 ' 

+CJlr2+-D-2~ , 
3c2 2 -1 b = - [  1 p-BC2 

D1 2 ( h ~ ) ~  

(3.1~)  

(3.lb) 

(3.2) 

(3.34 

(3.3b) 

(3.3c) 
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(3.34 

The Painlev; PDE test for (3.2) consists of seeking conditions on the coefficients 
a, b, c and d so that the equation admits solutions of the form of a Laurent series 

(3.4a) 

with 

4(7,0, 4 = 0 + v(z, 4, (3.4b) 

where y (z , i l )  and uj(z, i l )  ( j  = 0,1,2, ...) are analytic functions of z and il in the 
neighbourhood of a non-characteristic movable singularity manifold defined by 4 = 0 
and p is an integer. Substituting (3.4) into (3.2) and equating coefficients of like powers 
of 4, we can determine p and define the recursion relation for u j ( j  = 0,1,2,. . .). To 
pass the Painlev; PDE test, the expansion should be well-defined and contain the 
maximum number of arbitrary functions allowed (in this case four). The compatibility 
conditions at each resonance, occurring at some j where u j  is arbitrary, give the 
conditions for a, b, c and d so that the equation (3.2) will have solutions of the form 

The analysis of the leading-order term requires p = -2 and uo = -2. Equating the 

(3.5a) 

(3.4). 

like powers of 4 yields the general recursion relation 

( j  + l)(j - 4)(j - 5 ) ( j  - 6)uj + W j  = 0, 

where 

(3.5b) 

for j 2 1 (define uj=O for j < 0). The recursion relation (3.5) defines u j  for j 2 1 
unless j = 4,5,6 where resonances occur (the resonance at j = -1 is usually associated 
with the fact that y(z,A) is an arbitrary function). Therefore, the recursion relation 
(3.5) is consistent provided that W j  = 0 for j = 4,546, which are the compatibility 
conditions. From ( 3 3 ,  we obtain 

u1 = 0, (3 .6~)  

~ 2 = - -  1 [ - + ~ ( $ ) ~ + b ] ,  av 
6 az 

u3 = 1 6 ( c + a $ )  

(3.6b) 

(3.6~) 

The compatibility condition for j = 4 gives 

d = 0, i.e. p = 0, (3.7) 
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whereas the compatibility condition for j = 5 is automatically satisfied. The compat- 
ibility condition for the resonance occurring at j = 6 yields 

Since w is an arbitrary function, a, b and c must satisfy the system of equations 

da 
dz 

4ac + - = 0 

and 
dc a2b 

2c + - - a - - 0 .  
dz aA2 

(3.94 

(3.9b) 

According to the definitions of a, b and c (see (3.3)), in terms of h-, (3 .9~)  becomes 

(3.10~) 

i.e. 

h- = const. (3.10b) 

Note that 0 - 2 ,  01 and C2 are rational functions of h- (see (2.15~) and (2.9b)), so setting 
the factor in the square bracket in (3.10~) equal to zero also yields h- = constant if 
the resulting equation has real positive roots. Consequently, from (3.3c), c = 0 and 
(3.9b) can be simplified to 

d2b 
- = 0, a 3 ~ 2  

(3.1 la) 

whose solution is 

b(z, 4 = f l ( T ) A  + fo(T), (3.1 1 b) 

In summary, from (3.1) and (3.3), in the moving coordinates (<,X, Y), the conditions 
where f o  and f l  are arbitrary functions. 

for equations (2.14) to fulfil the PainlevC PDE test are 

B =o,  (3.12~) 

h- = const, (3.12b) 

p-BC 
2(h-)2 + M2 = Fl(X)Y + FO(X), (3.12~) 

where F o ( X )  and F1(X) are arbitrary functions. In other words, equation (2.14) is 
completely integrable if the rotation is absent, the bottom is flat up to the leading 
order, and the difference between the leading-order linear-long-wave speed and the 
actual linear-long-wave speed is only allowed to be a linear function of Y. Note that 
in David et a2.3 (1987) paper, the bottom is expressed as h = ho(X)+chl(X)Y +O(c2) .  
The conditions for the gKP equation derived by them to pass the PainlevC PDE test 
are: ho = 1 and the flux of the background current in the x-direction is a linear 
function of Y only (Clarkson 1990), which are consistent with conditions (3.12b) and 
(3.12~). 
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3.2. Reduction to the K P  equation 
When the conditions (3.12) are satisfied, (2.14) can be simplified to 

395 

a2vo 3 c  a2v; CCD~ a4v0 ca2vo a2v0 

axa5: 4 at2 6 c  a t4  2 ay2 a t2  + -D-2- + -- + -- + [Fl(X)Y + Fo(X)] - = 0, (3.13) 

where all the coefficients, except the coefficient of the last term, are constant. We seek 
a transformation to convert (3.13) into the KP equation. 

We find that the following transformation: 

(3.14a) 

T = (~/cx) ' /~D~X/C,  (3.14b) 

transforms equation (3.13) into the KP equation 

(3.14d) 

(3.15) 

It is known that the KP equation (3.15) is completely integrable and different kinds 
of analytical solutions, such as N-line-soliton solutions and periodic solutions, can be 
obtained (Freeman 1980; Hammack, Scheffner & Segur 1989; Ablowitz & Clarkson 
1991). Using transformation (3.14), one can easily obtain the corresponding Lax pair 
for equation (3.13) from the Lax pair for the KP equation (Clarkson 1990). 

For initial-boundary-value problems, in general, the lateral boundary conditions 
(2.16) will interfere with the integrability of the uKP equation. However, under some 
circumstances, it is possible that the lateral boundary conditions will not interfere 
with the integrability of the uKP equation. Under the integrability conditions (3.12) 
and transformation (3.14), the boundary conditions (2.16) become 

(3.16~) - = ( 6 D 1 ) - ' " [ ~ + C l X F 1 ( q ) d q ]  ar  ax a5 on E=ER(T),  
a Y  

(3.16b) 7 ac = ( ~ D I ) - ~ / ~  [g + C lxF1(q)dq] 2 on E = EL(T), 
ay 

where 

(3.16~) 

(3.16d) 

If the solution to the Cauchy problem of the KP equation has the travelling wave 
form (in this case the KP equation can be reduced to an ordinary differential equation, 
which admits solitary wave and cnoidal wave solutions (Chen & Wen 1987)) 

[(X, P, T )  = QkX + IF - oT), (3.17) 
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where k, 1 and o are real constants, and the sidewalls are given by 

then the boundary conditions (3.16) are automatically satisfied (note that the sidewalls 
given by (3.18) are parallel). In this situation, the boundary conditions (2.16) will not 
interfere with the integrability of the uKP equation (3.13). 

The KP equation (3.15) has a solitary-wave solution (Freeman 1980) 

o = k3 + 312/k, = ik2sech2 [(kX + 1r - oT) /2] , (3.19) 

where k and 1 are constants, which can be determined from the amplitude and the 
direction of the incident solitary wave. From transformation (3.14), the solitary-wave 
solution for equation (3.13) is 

?o = ~ 2D1 k’sech’ [ (6/~)’ /~@/2]  , 
C’D-2 

where @ is the phase function given by 

(3.20a) 

(3.20b) 

The crest line of the solitary wave is defined as @ = 0, i.e. 

(3.21) 

In the moving coordinates ( t ,X,  Y), at different X, the crest line still remains a 
straight line on the (t, Y)-plane. However, its direction will change due to the 
contribution from F1, whose relations with the topography and the background 
current are described by (3.12~). The contribution from Fo only causes the crest line 
to translate and changes the speed of the solitary wave in the moving coordinates. In 
the physical stationary coordinates (t ,  x, y), the crest line is given (by transformation 
(2.9)) as 

Strictly speaking, the crest line at different time t is no longer a straight line on the 
(x,y)-plane, but the curvature of the crest line is very small. 

In the absence of rotation, the background current field has the same effect as the 
weak variation of the bottom (see (3.12)). Without loss of generality, we ignore the 



The unijied KP equation 397 

FIGURE 1. The shape of the bottom given by (3.23). 

FIGURE 2. The location of the crest line of a solitary wave propagating over the bottom shown in 
figure 1 at different X in the moving coordinates ( X  from 0 to 5 with an increment 0.5). 

background current field in the following discussions. For simplicity, we only consider 
a single-layer system, i.e. free surface wave propagation. 

For an oblique incident solitary wave initially described by (3.20~) with k = 1 and 
1 = 6-1/2 propagating over a bottom given by 

(3.23) 

with E = 0.05 (see figure l), figures 2 and 3 show the location of the crest line in 
the moving and stationary coordinates, respectively. The lateral sidewalls are not 
present in this example. In both coordinate systems, the propagation direction of the 
solitary wave continuously changes from positive angles with respect to the +<-axis 
(+x-axis) in the moving (stationary) coordinates to negative angles. In the stationary 
coordinates, this continuous change of directions may be explained by fact that the 
wave speed of a long wave increases as the depth increases. 

Figure 4 shows the location of a normal incident solitary wave propagating in a 
channel bounded by 

H = 1 + EB = 1 + 2e (F1 Y + Fo)  = 1 + 4esech’ [1.5(X - 2.5)] ( Y  - l), 

y,(x) = -e-”’ [ 1‘ Fl(s)dsdq + y,(O) = -e-l/’ [O.O03(ex - 5 ) ( e ~ ) ~  + 11 , (3.24~) 
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FIGURE 3. The location of the crest line of a solitary wave propagating over the bottom shown in 
figure 1 at different times t in the stationary coordinates ( t  from 0 to 90 with an increment 10). 

X 

FIGURE 4. The location of the crest line of a normal incident solitary wave propagating over the 
bottom given by (3 .25)  in a curved channel as shown in this figure at different times t ( t  from 0 to 
90 with an increment 10). 

which are plotted in figure 4 (for E = 0.05). In this case the bottom is given by 

H = 1 + EB = 1 + E {0.12(X3 - 3X2)Y - 4sech2 [1.5(X - 2.5)]}, (3.25) 

which is shown in figure 5. 
From (3.22) and (3.24), the primary direction of the crest line coincides with the 

horizontal slope of the sidewalls at x = t. If the slope of the sidewalls is positive 
(negative), then the direction of the crest line is also positive (negative). This agrees 
with the results shown in figure 4. 

3.3. Reduction to the Kd V or cKd V equations 

When the coefficient of the last term in (2.14) is independent of Y ,  i.e. the topography 
and the background current do not vary in the transversal direction, a solution which 
is independent of Y may exist (if the sidewalls are present, they should be straight 
and parallel). In this situation, the Painleve PDE test shows that the conditions for 
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FIGURE 5. The shape of the bottom given by (3.25). 

equation (2.14) to be completely integrable are 

P = 0, 

dc 2 
- + 2c = 0, 
dz 

(3.26~) 

(3.26b) 

where c is given by (3.3~) and 
X 

z = (6/a)'12 1 Dl/CdX. (3.26~) 

The solution to (3.26b) is either c = 0 or c = ;(T + zo)-l, where zo is a constant. 
If conditions (3.26) are satisfied, equation (2.14) can be further simplified to 

where we have already assumed that qo + 0 as 5 + f c c  and 

(3.27b) 

The following transformation: 
X X 

ro = - 401 l ,  z = (6/a)'12 1 DI/CdX, f3 = (6/a)'12 [e - 1 Fo(q)dq] (3.28) 
C2D-2 

transforms equation (3.27~) into 

(3.29) 

Since c = 0 or c = i(z+z0)-', (3.29) is either the KdV equation or the cKdV equation. 
In either case, (3.29) is completely integrable (Gardner et al. 1967; Calogero & 
Degasperis 1978). Moreover, the KdV and cKdV equations are essentially equivalent 
since their solutions are related by a simple Lie-point transformation (Clarkson 1990). 
From definition (3.3~) and transformation (3.28), c = 0 corresponds to h-= constant, 
whereas c = i (z  + z0)-l gives the differential equation for h- 

xd2h- [d, X2Dl ]  (dh-)2 = 0, + - + -  - 
dX2 dh- C dX 

(3.30~) 
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where 

(3.30b) 

For a single-layer system, we can find the analytical solution to (3.30). Substituting 
p+ = 0, p- = 1, h- = h, D, = h” and C = h1l2 into (3.30), we obtain a simple equation 
for h, 

2 h - + 3 ( 3  d2h =o,  
dX2 

(3.31~) 

whose solution is 

h(X) = (1 + X/X0)1/4, (3.31b) 
where h(0) = 1 has been used and Xo = ; ( c x / ~ ) ’ / ~ T ~  can be determined from the slope 
of the bottom at X = 0. 

We now give closed-form solutions for one and two solitary waves propagating 
over an arbitrary weakly and slowly varying topography, which is described by 

2 = --H-(X) = -h- - rB(X), (3.32) 

where h- is a constant. Without loss of generality, we ignore the background current 
field, since it has the same effect as the topography (3.32) has (see (3.27)). 

With the aid of transformation (3.28), 

801 k2sech2 [k(6/2)”’ ( 4  - ~ P- C lx BdX - 4k2D1X/C)] , (3.33) 
2( h-)2 ro(5,X) = c2D_2 

where k is a constant, gives the solution for a solitary wave propagating over a weakly 
and slowly varying topography (3.32), whereas 

with 

where ki and hi (i  = 1,2) are constants, gives the solution for two solitary waves 
propagating over a weakly and slowly varying topography (3.32) (Drazin & Johnson 
1989, pp. 22, 190). 

From (3.33) and (3.34), one can see that an individual solitary wave moves with 
velocity 

(3.35) 

Depending on the sign of Ui, which is determined by the topography and the 
amplitude of the solitary wave, the solitary wave will propagate to the right, to the 
left or remain still. Thus, in the moving coordinates, the effect of the topography 
(3.32) cannot only change the magnitude of the phase velocity but also change its 
direction. Therefore, in the moving frame, under different circumstances, a solitary 
wave can remain still or bounce forward and backward; two solitary waves can collide 
against each other; a smaller solitary wave can catch up with a larger one after both 
have reversed their directions. These phenomena cannot exist if the bottom is flat. In 
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the constant-depth case, a solitary wave propagates unidirectionally from the left to 
the right; a larger solitary wave always propagates faster than a smaller one. 

4. Integral invariants 
In this section, we seek the integral invariants associated with the uKP equation, 

(2.14), for waves propagating in a varying channel. Under the assumption that 4 is 
locally confined, i.e. 4 and its <-derivatives vanish as < + +_GO, equation (2.14) and 
boundary conditions (2.16) can be rewritten as 

aq 1 d c ,  3 c  a 8 2  c r ~ ~  a34 

ax 2 c d x  4 a< 6 c  a <  - + --q+ -D-2- + -7 

(4 .1~)  

l d Y ,  
C dX 

V = --q on Y = YR(X), YL(X). 

Letting < + -a in (4.1), we obtain 

V(-a,X, Y )  = lr (g + {Q) d< = 0, 

(4.lb) 

(4.1~) 

which implies 

(4.3) 

where F is an arbitrary function of X. Expression (4.3) shows that if fi(<,X, Y )  is 
locally confined, S_+,"fid< along each vertical plane parallel to the <-axis must vary 
exponentially like exp (-BY /C) across the channel at different X > 0. Expression 
(4.3) also holds at X = 0 if we let X + O+. Thus, to hope that the solution of the uKP 
equation is locally confined (i.e. no wavenumber components with an infinite group 
velocity are present and thus disturbances remain locally confined), the minimum 
restriction on the initial condition is that (4.3) is satisfied at X = 0 (Grimshaw 1985; 
Katsis & Akylas 1987; Grimshaw & Melville 1989). 

From (4.1), we have 

If the rotation is absent, i.e. P = 0, from (4.3) and (4.4), we find that 

(4.5) 

(W(X) = YL(X) - YR(X) is the width of the channel) is the first-order invariant (in 
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amplitude). Unfortunately, when p # 0, we fail to find the corresponding first-order 
invariant from the uKP equation (the first-order invariant may not exist in this case). 
However, we do find the second-order invariant defined as 

for all p by multiplying (4.1~)  by Q and integrating the resulting equation over 

In the physical coordinates, the dimensionless mass A! and energy Q are defined 
[-a < 5 < +oo;YR < Y d Y,]. 

as 

(4.74 b )  

From transformation (2.9a), we have dx = Cd[,dy = e-1/2dY. Thus, in terms of the 
moving coordinates, ,A' and Q become 

YL +a YL +oo 
QdWY, Q = c s, s_, Q2d[dY. (4.8a, b )  

Therefore, the second-order invariant f measures the energy, whereas the first- 
order invariant 9 (when the rotation is absent) measures the mass only if CW is 
a constant. It follows that a locally confined solution of the uKP equation (2.14) 
with the boundary conditions (2.16) will conserve the energy, but in general will 
not conserve the mass, even when the first-order invariant exists. This is a direct 
consequence of the neglect of the weak backward propagating wave field excited by 
the variation of the channel (and perhaps by the rotation if it exists) in the uKP 
equation. The energy of the neglected backward propagating waves is of a higher 
order, whereas the mass of the backward propagating waves is of the first order and 
has a cumulative effect. To ensure that both A! and 9 (when p = 0) are conserved, 
the neglected weak backward propagating wave field has to be taken into account 
(for the KdV equation case, see Miles 1979 and Knickerbocker & Newel1 1985). 

If the initial condition is given by 

k2sech2 { ; ( 6 / ~ ) ' / ~  [ k t  + ~ ( ~ D I ) ' / ~ Y  /C]} exp (-pY /C) , (4.9~) 

which represents a normal ( 2  = 0) or an oblique (1  # 0) incident solitary wave 
and satisfies (4.3) at X = 0, and the solution evolving from this initial condition is 
assumed to be locally confined, we can evaluate the invariants 9 (when p = 0) and 
j analytically: 

2D1 
Q(L09 Y )  = C2D_2 

8kD1 
C2D-2 

9 = (C/W)'I2 lr 1; Q ( t , O ,  Y)dSdY = - (cW~r/6) ' /~  (p  = 0) (4.9b) 

and 

(4.9c) 

where all the functions in (4.9) are evaluated at X = 0. 
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5. Summary and concluding remarks 
Using the reductive perturbation method, we have derived the unified KP (uKP) 

equation for surface and interfacial waves propagating in a rotating channel with 
varying topography and sidewalls. The effect of a steady background current field 
on wave propagation has also been taken into account. The uKP equation includes 
most of the existing KP-type equations for surface water waves and interfacial waves 
as special cases. The Painleve PDE test has been used to search for the conditions for 
the uKP equation to be completely integrable. When these conditions are satisfied, 
transformations have been found to reduce the uKP equation to one of known 
integrable equations: the KP, the KdV or the cKdV equations. As a result, for certain 
topographies and sidewalls, analytical solutions for solitary-wave propagation can be 
obtained in the absence of rotation. The integral invariants associated with the uKP 
equation for waves propagating in a varying channel have been obtained and their 
relations with mass conservation and energy conservation have been discussed. 

When the uKP equation is completely integrable, there are several powerful analyt- 
ical techniques for obtaining many classes of solutions (soliton, multisoliton, periodic 
solutions, etc.) to the uKP equation, such as inverse scattering transform, Backlund 
transformations, Hirota's method and symmetry reduction. Unfortunately, the con- 
ditions for the uKP equation to be completely integrable are very restrictive. They 
require that no rotation exist, the variation of the topography should be weak (h- = 
constant) and the topography (and the current field if it exists) in the transversal 
direction be a linear function of Y only. In addition, the sidewalls usually will in- 
terfere with the integrability. Therefore, to apply the uKP equation to more complex 
situations, one needs to solve the equation numerically. An efficient and accurate 
numerical scheme has been developed to solve the uKP equation by using the Petrov- 
Galerkin finite element method and some numerical results have been obtained. The 
numerical study of the uKP equation will be reported in the near future. 

The research presented here is, in part, supported by the Army Research Office 
(DAAL03-92-G-0116). The authors thank the reviewers for their comments and 
suggestions on the earlier version of this paper. 

Appendix. Detailed derivation of the uKP equation 
In this Appendix we present the detailed perturbation procedures and analyses 

which lead to the uKP equation. Substituting the perturbation expansions, (2.12), 
into the governing equations (2.1 l), we obtain a sequence of initial-boundary-value 
problems. 

A.l. The zeroth-order problem 
The zeroth-order problem is 

1 au$ a d  
-- +'=O, c a t  az 
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+ 

a p ,  -0 ,  
az 

+ +dY v- = u-- on Y = YR(X) ,  YL(X). 
OdX 

From (A la)-(A lh), we obtain the following solution forms: 

(A l i )  

(A 2f4 
where 9; and F: are constants of integration with respect to t. In view of 
transformation (2.9a), these functions are independent of the physical time t. We 
could also integrate (A2c) with respect to 5 and introduce another set of constants 
of integration, F : ( X ,  Y, 2). However, to obtain the evolution equation for qo, a p i  
will be used directly. These constants of integration, F:, F$ and F:, represent 
a background steady current field (with non-vanishing vorticity in general), which 
is of the same order of magnitude as the velocity field associated with the wave 
motion. Note that we have already expressed all zeroth-order solutions in terms 
of qo which can be determined from the solvability condition of the first-order 
problem. 

A.2. The Jirst-order problem 
The governing equations and boundary conditions for the first-order problem can be 
written as 

+6-+ - - L i -  P AGp - P  A p 2  
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p+pT - p-p;  + ~1 = O on z = 0, (A 3A 

w: = O  on Z =h+, (A 3g) 

on Z =-h-, 
- aw; dh- 

az dX 
~1 = - B - u , -  

on y = YR(X), YL(X),  (A 3i) 

in which (Ald) has been used to obtain (A3A. Substituting (A2d) into (A3d) and 
integrating the resulting equations from 0 to 2, we obtain the vertical profiles of the 
pressure p i ,  

v- + = uh+- dY 
' d X  

+ 

where ph(t ,X, Y )  = p?(<,X, Y,Z)Iz=o. All the other first-order quantities will be 
expressed in terms of v o  and p h .  

Substituting (A 2) and (A 4) into (A 3b), we obtain 

Replacing in the continuity equations (A 3a) by (A 5), integrating the resulting 
equations with respect to Z from 0 to h+ for w: and from -h- to 0 for wc,  and 
applying the boundary conditions (A3g) and (A3h), we obtain both upper- and 
lower-layer vertical velocity components evaluated along Z = 0: 

(A 6b) 
2%- avo F J ~ = ~  avo h- a%; a%- B avo 
c h -  a t  c a t  c ax ax h- a t '  

---+- 

where w&( t ,X ,  Y )  = w:(t,X, Y,Z)IZ=O and 

h+ 0 

%+(X, Y )  = 1 9 l d Z ,  W ( X ,  Y )  = lh- 9;dZ, (A 7% b) 

which are the volume fluxes of the background current field in the x-direction in 
the upper- and lower-layer, respectively. Differentiating (A 6) with respect to t and 
substituting (A 2c) into the resulting equations, we find 



On the other hand, from the dynamic interfacial condition (A 3J), we have 

V l  = P-PG - P+PTO. (A 9) 

Substituting this expression and the zeroth-order solutions (A 2)  into the kinematic 
interfacial conditions (A 3e), we have 

Differentiating equations (A 10) with respect to 5 and replacing atw; by (A8), we 
obtain 

(A l l b )  

Multiplying (A l l a )  by p+h-/p-h+ and adding the resulting equation to (A l l b ) ,  
all terms on the left-hand side are cancelled and all terms on the right-hand side 
yield 

where 
D,(X) = p-(h-)" + (-l)"-'p+(h+)", ( n  = 1, -2), (A 13a) 
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(A 13b) 
and (A2e) has been used. 

The boundary conditions for qo on the sidewalls are obtained by differentiating 
(A li) with respect to 5 and substituting (A 2b) and (A 2c) into the resulting equations: 

N J X ,  Y )  = p-@-/(h-)" + (-l)"p+@/(h+)", (n = 1, -2), 

avo B 1 dY avo 
ay c c d x  a t  - + -qo - --- = p (~'9: - p - 9 ; )  on Y = YR(X), YL(X), (A 14a) 

with 

[h' + F] !!?T + p (h'9: + h-9;) = 0 on Y = YR(X), YL(X). (A 14b) 
ay  

Both (A 14a) and (A 14b) require that 9: be independent of 2 on Y = YR(X) and 
Y = YL(X). Thus, from (A7), 9: = %*/h* on the sidewalls. Therefore, from the 
governing equation (A 12) and the boundary conditions (A 14), the influence of the 
steady current field on the wave field is through the fluxes in the x-direction in both 
layers @ (note that the counterparts in the y-direction are 0(e'I2), see (2.12b)). If 
a+ = @- = 0, the weak current field does not have any impact on the wave field (up 
to O(€)). 

A.3. Mean interfacial displacement and the uKP equation 
When the rotation is present and the averaged mass fluxes of the steady current 
in the x-direction are not identical in the upper and lower layers, i.e. /? # 0 and 
Nl # 0 (which means f h r  p-F;dZ/h- # $+ p+F;dZ/h+), equation (A 12) is 
an inhomogeneous differential equation for the interfacial displacement qo, whereas 
(A 14a) are inhomogeneous boundary conditions. Since the terms on the right-hand 
side of (A 12) are independent of 5 ,  a solution to (A 12) can be written as 

l?0(<,x7 y, = @(<,x, y, + q(x, y), (A 15) 

where the steady part (independent of the physical time t) 
Y 

q(X, Y )  = -Bexp (-pY/c) / Nl(X,  Y')exp (pY'/C) dY' (A 16) 
YR 

is the particular solution to (A 12) which also satisfies the boundary conditions 
(A 14a), whereas the unsteady part 9 is the solution to the homogeneous equation 

The boundary conditions for 0 are also homogeneous: 

Thus, when the averaged mass fluxes of the steady current in the x-direction are 
not identical in the upper and lower layers, rotation will cause a mean interfacial 
displacement, 2 = ij(X,Y). Equations (A17) and (A18) are the uKP equation and 
the corresponding boundary conditions on the sidewalls of a channel. 
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